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Abstract—We describe the various aspects involved in building
FastTrans, a scalable, parallel microsimulator for transportation
networks that can simulate and route tens of millions of vehicles
on real-world road networks in a fraction of real time. Vehicular
trips are generated using agent-based simulations that provide
realistic, daily activity schedules for a synthetic population of
millions of intelligent agents. We use parallel discrete-event
simulation techniques and distributed-memory algorithms to
scale these simulations to over one thousand compute nodes.
We present various optimizations for speeding up simulation
execution times, including (i) a set of routing algorithms such
as variations of Dijkstra’s shortest path algorithm and heuristic-
based A∗ search, and (ii) a number of different partitioning
schemes for load balancing, including geographic partitioning
(that assigns simulation entities that are geographically close
by to the same processor) and scattering (that assigns geo-
graphically close by entities to different processors). Our main
findings include: (i) A∗ significantly outperforms other routing
algorithms while computing near-optimal paths; (ii) surprisingly,
scattering outperforms more sophisticated partitioning schemes
by achieving near-perfect load-balancing. With optimized routing
and partitioning, FastTrans is able to simulate a full 24 hour
work-day in New York – involving over one million road links
and approximately 25 million vehicular trips – in less than one
hour of wall-clock time on a 512-node cluster.

Keywords— Parallel Discrete-Event Simulation, Trans-
portation Simulation, Load Balancing.

I. INTRODUCTION

How do we build systems that can realistically simulate, at
a high level of detail, the traffic patterns resulting from the
activities of tens of millions of people within a geographic
region? What strategies do we employ such that we maximize
the usage of the processor cycles available to us? And how
do we scale these systems to hundreds, even thousands of
processors on high performance computing clusters, so that
they execute in a fraction of real time?

In this paper we present various aspects of designing,
building, and optimizing FastTrans – a scalable, parallel
microsimulator for transportation networks that can simulate
and route tens of millions of vehicular trips on real-world
road networks. Using parallel discrete-event simulation tech-
niques [9] and distributed-memory algorithms, we are able to
model transportation networks of large geographic regions –

consisting of over a million road network elements and over
20 million vehicles – and scale these simulations to execute
on large, high performance clusters upto 20 times faster than
real time.

Large-scale simulations are an important tool in the emerg-
ing field of infrastructure modeling, where simulating the
behavior of millions of entities and their interactions with vari-
ous interdependent infrastructure networks (like transportation,
communication, electric power) demand significant computa-
tional resources. At the Los Alamos National Laboratory, Fast-
Trans is one of the key modules in a suite of simulators that
have been built using a common parallel simulation framework
for infrastructure modeling. The common framework allows
for easy integration of the various modules; for instance, we
have been able to integrate FastTrans (introduced in [20]) with
ActivitySim, an agent-based simulator (introduced in [10]) that
provides daily activity generation, scheduling and execution
for a synthetic population of intelligent agents. This allows
us to generate realistic activity schedules for millions of
intelligent agents, route the tens of millions of vehicular
trips generated from these activities, and observe how traffic
conditions and the variations they cause in expected travel
times impact activity scheduling and vice versa.
Organization. We present the key aspects of the road-network
and activity modeling philosophy in Section II. We discuss
the software architecture of FastTrans, ActivitySim, and the
interaction between these modules in Section III. In Section
IV, we describe the various design choices for routing, par-
titioning, and load balancing that were used to optimize the
performance of our simulations. Section V contains scaling
results for parallel runs. Conclusions are in Section VI.

II. TRAFFIC MODELING THROUGH REALISTIC ACTIVITY
GENERATION

A. Modeling the Road Network

Approaches to transportation simulation have spanned a
variety of simulation paradigms: from fluid-based aggregate
models to detailed microsimulations and from time-stepped
approaches to discrete-event models. Fluid models nicely de-
scribe the macroscopic behavior of networks, while microsim-



ulations (where the behavior of each individual vehicle is
simulated) are more suitable for problems that require a higher
level of spatial granularity – study of vehicular emissions, for
instance.

Traditionally, traffic microsimulations have employed a
time-stepped cellular-automata approach [3], [6], [15], [16],
[19]. A prominent example of this is TRANSIMS [19], devel-
oped at the Los Alamos National Laboratory which models
vehicular dynamics such as lane changing and emissions, but
at a high computational cost. In this paper, we present a queue-
based, discrete-event approach to traffic microsimulation –
which sacrifices some amount of spatial granularity for speed
– starting with the premise that the questions of interest
are vehicular dynamics at the intersection and link levels. A
queue-based approach can be used to quickly answer time-
critical questions like evacuation times and optimal exit routes
from a city in an emergency situation. Further, such models
can also be used to guide infrastructure planning activities
like the impact of building a new road or a relief-route, or
conversely, the impact of disabling a route.

The queue-based traffic simulation model was first devel-
oped in [8]. A time-stepped parallel implementation of this
approach was later developed by Cetin et al. [4]. Subsequently,
Charypar et al. [5] observed that time-stepped computations
are frequently unnecessary since in a given road network,
there are a large number of links on which the traffic flow
densities are very low. Updating these links every time step
are often “null ops” and therefore, waste computational cycles.
To overcome this inefficiency, a discrete-event queue based
model is proposed in [5] for a sequential, single-processor
environment.

The FastTrans approach is to combine the discrete-event
queue model with scalable parallelization. This allows us to
simulate large-scale, real-world networks and realistic traffic
scenarios involving tens of millions of vehicles in a fraction
of real time. Also, since FastTrans simulates the behavior of
each vehicle or traveler at the individual entity level, it retains
some of the advantages of microsimulations. In addition,
the congestion model of FastTrans captures the non-localized
effects of congestion, allowing us to observe the macroscopic
nature of the network.

B. Queue Model of Road Networks

In the queue model, each road link is modeled as a queue,
whose properties are described by two main parameters: (1)
their physical capacity (i.e., the number of bumper-to-bumper
vehicles that can be accommodated on the link) and (2) the
flow rate of the link. The flow rate indicates the number of
vehicles that can transit through the link and is calculated
by the procedures established in the Highway Capacity Man-
ual [21]. Each queue is attached to a network node which
represents a traffic intersection, or a point where the road link
diverges (a freeway exit, for example). The scheduling policy
for vehicle departures from a node is determined by the type
of intersection that is being modeled.
Further, to model congestion, FastTrans builds upon the

techniques introduced in the transportation simulation litera-
ture [3]–[5], [15]. The parameters of flow rate and physical ca-
pacity allow us to capture congestion by dynamically adjusting
the flow rate (as happens during a lane-closure, for instance)
and also by blocking the link when its physical capacity
has been reached. In this case, upstream nodes are blocked
from adding any further vehicles onto the link, mimicking the
behavior of traffic jams that spill backwards. Once vehicles
start to leave the downstream congested links, this information
is propagated to the upstream links.

C. Activity Modeling

The ActivitySim agent-based simulation software (intro-
duced in [10]) provides daily activity generation, scheduling
and execution for a synthetic population of intelligent agents.
Persons, locations, households, and zones comprise the entities
used to model a geographical area. A person is characterized
by age, gender, income, household, and position in the house
(like principle income generator). Other state-variables of a
person include current activity and location, demographics,
preferences for activity locations, and an activity schedule.
A location tracks persons as they participate in activities. A
household is associated with a location, has aggregated income
and members (i.e., a family). A zone is an aggregation of
locations used when selecting where a given activity will take
place.

The persons, locations, households, and zones are provided
as input at runtime along with a specification of a set of activity
types. A person’s schedule consists of a sequence of activities
(e.g., home, work, school) with each activity having a start
time, activity location, and duration. Each person re-evaluates
and modifies their activity schedule as required and plans new
activities 24 hours in advance. The schedule can be generated
through different methodologies: random, pre-calculated, or
utility-driven. In the random method, a random activity type
is added to the schedule; in the pre-calculated method, a
daily schedule obtained from the National Transportation
Survey [22] is used; in the utility-driven method, each agent
generates a daily schedule based on personal characteristics,
previously performed activities and current priorities. Each
activity of an agent is associated with a utility function (which
depends on activity duration), a priority function (which
depends on time passed since that activity was last performed),
and additional constraints (acceptable start and end times) that
cannot be violated. A more thorough comparison of these
activity generating schemes is presented in [10]. We will use
utility-driven activity generation scheme for the rest of this
paper.

III. SOFTWARE ARCHITECTURE

All simulation modules are built on top of SimCore, a
generic framework written in C++ that provides applica-
tion programming interfaces (APIs) for building distributed-
memory, discrete-event simulation applications. SimCore pro-
vides generic constructs like entities and services that can
be adapted to build objects in a simulation model. SimCore



also provides message objects for communicating between
simulation instances in a parallel environment.

For message passing and synchronization, we use the Prime
Scalable Simulation Framework (PrimeSSF) [17], a parallel
simulation engine that employs a conservative synchroniza-
tion mechanism. PrimeSSF supports both shared-memory and
distributed-memory implementations though, for scalability
reasons, all the simulators described in this paper are pure
distributed-memory applications. Message-passing is imple-
mented using the MPI message passing interface [13].

A. FastTrans Architecture

FastTrans is written in C++ and built using the constructs in
the SimCore library. In FastTrans, simulation entities are the
fixed elements of the road network – road links and traffic
intersections. All the properties of the network – capacity,
flow rate, etc – are members of the relevant entity class. The
scheduling logic at a traffic intersection is implemented as a
service on the traffic-node entity. The modular design allows
the scheduling policy to be easily changed by simply replacing
one scheduling service with another.

The mobile elements of the simulation (vehicles) are repre-
sented using messages. Vehicle objects (messages) are created
and destroyed during the start and end of a trip, respectively.
The main state variables associated with a vehicle are source,
destination and the route vector. Route vectors are computed
at the start of the trip by the FastTrans routing module; for
this, we maintain a copy of the connectivity graph on each
simulation process. (The routing algorithm is described in
more detail in Section IV-A). The input data to FastTrans is the
road-network graph for the region being simulated – indicating
connectivity, road length, speed limits, lane capacity, etc –
and vehicular itineraries indicating source, destination and start
time of a given trip. The trip inputs can be read from a file, or
can be sent using messages when FastTrans is coupled with
ActivitySim.

Since FastTrans uses a distributed-memory model, different
entities of the road network are created in different memory
spaces during simulation start-up. Each simulation process
(also known as Logical Process, or LP) in the simulation is an
instance of a FastTrans executable running on a compute node.
A design schematic of the distributed architecture of FastTrans
is shown in Figure 1. Traffic intersections are distributed
across LPs according to the partitioning strategy employed
– geographic, random, etc., which we describe in more detail
in Section IV-B. Links (queues) are partitioned in a slightly
different manner: each link is placed on the same LP as
its terminating point1 based on the observation that more
messages are exchanged between the sink node and the link
(vehicle arrival, vehicle dequeue and so on) than between the
source node and the link. Placing the link and the sink node
on the same process allows us to reduce message-passing

1Note that each link is attached to two intersection end-points – the source
node, from where the link originates and the sink node, where the link
terminates.

overhead. A more detailed description of the architecture is
presented in [20].

Logical Process Logical Process

Logical Process

Intersection node
and all incoming 
queues are on one
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passing.
are sent via inter−LP message
intersections on different LPs
Vehicles travelling between

Fig. 1. Distributed-memory model of FastTrans.

B. ActivitySim Architecture

ActivitySim, written in C++ and built on top of SimCore,
implements agent-based models combining traditional agent
technology from the artificial intelligence community and
numerical methods for activity schedule calculations. The sim-
ulation entities in ActivitySim are individuals and locations,
and generic agent classes are used to implement entities with
intelligent behavior (people). The behavior of a person in
ActivitySim is modeled using services that implement cogni-
tive functionality such as “perceive”, “think”, and “act”. This
allows people to change and adapt their activity schedules.
ActivitySim can run on a single workstation as well as on high
performance computing clusters. A more detailed description
of the ActivitySim architecture is provided in [10], including a
description of the AgentCore layer that provides the cognition
functionality.

C. Integrated Simulations

Both FastTrans and ActivitySim can be compiled as separate
applications and run independently of each other, each binary
being statically linked against the SimCore, PrimeSSF, and
MPI libraries. In this case, vehicle trips are pre-computed
and fed into the FastTrans module, while for ActivitySim
running in independent mode, activities that cause individuals
to travel from one location to another are processed internally,
without feedback regarding actual travel times that would have
depended on traffic conditions in the road network.

A more realistic (and interesting) approach would be to
combine the two simulators, and observe how traffic conditions
and the variations they cause in expected travel times impact
activity scheduling, and vice versa. The modular architecture
of the simulators and the use of a common simulation frame-
work allows us to integrate the two modules and achieve this
feedback mechanism with relative ease.

In the coupled simulation scenario, events in ActivitySim
that trigger a road trip ( Figure 2) are sent to FastTrans via
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Fig. 2. Modular software architecture of the integrated simulator.

messages. The actual trip is simulated inside FastTrans, and
upon arrival at the destination, an event is sent to ActivitySim.
In this case, unexpected delays in arrival time due to road
network congestion inside FastTrans can trigger recomputing
of activity schedules – behavior that is not observed when
the simulations are running independently. We note here that
the entity partitioning scheme used inside the two modules
are completely independent of each other; spatial mapping
information is needed to map the activity locations inside
ActivitySim to elements in the road network.

IV. PERFORMANCE TUNING

Detailed microsimulations are frequently used in model-
ing critical infrastructures such as transportation and com-
munication networks in a given region. Simulations involv-
ing natural and man-made disasters often require iterations
through multiple scenarios – to determine the best evacuation
strategy during an earthquake, for instance – implying that
such simulations need to execute much faster than real-time
to be useful. When combining the two simulation modules,
ActivitySim and FastTrans, we observe that the execution
time is overwhelmingly dominated by the FastTrans module
(Figure 3). Consequently, we focus our optimization efforts on
improving the performance of FastTrans.

A. Routing in FastTrans

Routing is the most important module of FastTrans – the
algorithm and parameters used to route vehicles are critical
to the validity of the simulation model. In addition, it also
accounts for more than half of the total execution time. We use
dynamic routing in FastTrans; calculating routes dynamically
allows us to achieve fast responses to congestion with the
additional benefit of reduction in the input data size2. However,
route computations on large graphs can easily become a
bottleneck, leading to severe performance degradation. We
use several optimizations to make online route computations
feasible in FastTrans where we require the shortest path

2If routes were pre-calculated, input file sizes would be significantly bigger.

Fig. 3. Comparison of the execution times of the two modules for a 32-CPU
parallel run of a medium sized US city

between a pair of nodes. We also exploit the fact that the
problem domain (road-network routing) allows us to use paths
that are not necessarily optimal; this motivates investigation
of very fast heuristic algorithms that obtain only near-optimal
paths.

Routing experiments were conducted with different vari-
ations of the standard Dijkstra’s algorithm [7]. These algo-
rithms were chosen due to recommendations made in Jacob et
al. [12]. The algorithms studied were: (a) Dijkstra, where
shortest-path trees, rooted at the source are constructed for
each routing query, (b) Optimized Dijkstra, where the search
loop is terminated upon finding the shortest path to the
destination, (c) A∗ search [11], a variant of Dijkstra that
employs a heuristic cost-function to bias the direction of the
search towards the destination. Further optimizations that were
used in all these implementations include smart label reset
(where only nodes explored in a previous routing computation
are re-initialized) and use of efficient data structures.

A∗ search was first proposed in AI literature [11], [18]. In
road network graphs, A∗ exploits the near-Euclidean property
to expand the shortest path tree in the direction of the
destination, whereas In Dijkstra, the search tree is expanded
in a circular manner centered at the source node This results
in the search arriving at the destination node much quicker for
A∗ than Dijkstra.

To bias the search towards the destination, we assign a
cost to each intermediate vertex as follows: given source s,
and destination t, for each intermediate vertex v, cost C(v) is
defined as:

C(v) = l(s, v) + D(v, t).

where l(s, v) is the shortest path length from s to v, and D(v, t)
is the estimated cost from v to t computed as a function of the
Euclidean distance between v and t. Since we are interested in
the shortest path in terms of time rather than distance, l(s, v)
is the time-cost of the path from s to v, and we define D(v, t)
as:

D(v, t) =
E(v, t)
Vmax



Fig. 4. Nodes expanded in A∗ (shown in blue) vs. Dijkstra (shown in green) in
a real road network. The red squares are the source and destination nodes, with
the source being at the center. Dijkstra expands the search tree in all directions
from the source node, while A∗ is more directed.

Fig. 5. A routing query where A∗ performs markedly better, expanding only
about one percent of the nodes (blue) compared to Dijkstra (green). On average,
in our computations A∗ expands 82% lesser nodes than Dijkstra.
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Fig. 6. Logarithmic chart showing various
overheads for Dijkstra, optimized Dijkstra, and
A∗ in a serial simulation run.

Fig. 7. Execution profile of FastTrans with
A∗ in a serial simulation on a 3 GHz Mac-Pro
work-station.
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Fig. 8. Execution profile of FastTrans with
A∗ in a parallel simulation on a 32-CPU
Linux infiniband I/O cluster.

where E(v, t) is the Euclidean distance from v to t and Vmax

is the maximum allowable speed in the network. Note that the
resulting paths using A∗ are not provably optimal; however,
since the road graph is almost Euclidean, our experiments
showed that the paths computed by A∗ are on average only
0.02% longer than the paths computed by Dijkstra.

Figures 4 and 5 illustrate the performance of A∗ versus an
optimized version of Dijkstra on a real-world road network
(from the northeast region of the United States). Notice that
A∗ explores a much smaller fraction of nodes than (even) the
optimized Dijkstra. Figure 6 shows, on a logarithmic scale,
the speed-up as well as the routing overhead for the three
implementations (Dijkstra, optimized Dijkstra, and A∗) from
a code-profiling exercise of a serial simulation run. The serial
run was executed on a 3 GHz Mac-Pro work-station for 20, 000
itineraries that were randomly sampled from the study-set.
Clearly, A∗ gives much better performance-accuracy trade-
off than other schemes. Figures 7 and 8 show the execution
profiles for FastTrans with A∗ in serial and parallel settings. In
the serial setting (Figure 7), about 63 percent of the execution
time is spent inside the routing module of FastTrans. In the
parallel setting, where each simulation process keeps a copy

of the entire routing graph, the fraction of time spent in
routing decreases (Figure 8) due to the additional overhead
from message passing and synchronization.

B. Partitioning and Load Balancing

In (standard) synchronized parallel discrete-event simula-
tions, the difference between the simulation clock of any two
logical processes cannot be greater than the look-ahead time
value specified for the simulation3. Thus, a simulation process
with a relatively high computational load, whose simulation
clock progresses at a slower (wall-clock) rate than the other
processes, slows down the entire system. Essentially, the speed
of execution of the simulation is determined by the slowest
process.

The computational load on a simulation process is deter-
mined by the partitioning scheme used to assign simulation
objects to compute nodes. In this section, we explore different
strategies for partitioning the simulation work load on a high-
performance cluster. An ideal partitioning algorithm achieves

3The look-ahead time value specifies the minimum amount of simulated
time it takes for messages to travel between two simulation processes.



Fig. 9. Figure illustrating road-network density
in the New York region.

Fig. 10. Figure illustrating distribution of event
load in the New York region.

Fig. 11. Figure illustrating distribution of
routing load in the New York region.

Fig. 12. Figure illustrating assignment of
entities under geographic partitioning scheme.
All entities with the same color are assigned to
the same processor.

Fig. 13. Figure illustrating assignment of
entities under scatter partitioning scheme. All
entities with the same color are assigned to the
same processor.

Fig. 14. A zoomed in version of the Fig-
ure 13. The scatter scheme assigns geograph-
ically close-by entities to different processors.

balanced load, while keeping messaging overhead to a mini-
mum.

1) Geographic Partitioning: In FastTrans, the bulk of inter-
process messaging occurs when vehicles travel between loca-
tions in the road network that have been assigned to different
processors. Since vehicular trajectories are, by nature, spatially
constrained, a partitioning algorithm that minimizes messaging
overhead would assign road-network locations that are geo-
graphically close to the same processor. A simple geographic
partitioning scheme divides the simulated geographic region
into a uniform rectangular grid, and assigns all road-network
entities (road intersections in our case) belonging to a grid cell
to the same processor.

2) Geographic Partitioning with Balanced Entity Distri-
bution: In real-world road networks, spatial distribution of
network elements is far from uniform; node density is much
higher within urban downtowns, and decreases significantly
as one moves away from the core regions (Figure 9). Thus, a
pure geographic partitioning scheme would result in unequal
entity distribution. To overcome this, we use a non-uniform

rectangular partitioning of the spatial region such that each
grid cell now contains an approximately equal numbers of
entities. Again, all entities in the same grid cell are assigned
to the same processor.

3) Geographic Partitioning with Balanced Event Load Dis-
tribution: From our earlier profiling exercise (Figure 8),
we observe that event-processing accounts for approximately
50% of execution time in parallel scenarios. Furthermore, the
number of events generated by the simulation entities also
varies with location. The event load distribution across the road
network has a pronounced spatial characteristic – busy roads
and intersections often tend to be geographically clustered.
Figure 10 depicts a a heat map of the road network in the
New York region, with areas in red being the busiest points
in the network, and areas in blue being regions with low
traffic volume. While it is generally not possible to accurately
determine the event load associated with a given entity without
actually running the entire simulation, we could assign an
event-weight to an entity by simulating a small sample of
the vehicular traffic. Once event-weights are assigned to all



entities, we once again do a geographic partitioning assigning
entities to processors while balancing event load distribution
across processors.

4) Geographic Partitioning with Balanced Routing Load
Distribution: This is similar to the previous scheme, with
entityt-weight being the number of routing computations
(rather than event computations) performed at an entity. Recall
that routing also accounts for a significant fraction of execution
time. Since, for a given trip, the entire route from source
to destination is calculated at the starting point, locations
that serve as trip originators (residential locations, business
districts, etc) will generate more routing computations than
transit locations with high traffic volume (busy freeways).
Figure 11 illustrates the spatial distribution of the routing load
in the road network.

5) Geographic Partitioning with Balanced Weighted-Sum
of Loads: Event processing and routing both account for
significant chunks of execution time; however, on a per-
computation basis, a single routing computation can be up
to two orders of magnitude slower than processing a single
event. By assigning appropriate weights to each of these
computational tasks, we can assign a weighted sum to an
entity that approximately represents it’s total computational
cost. Then, while partitioning geographically, we balance this
computational weight across processors. However, choosing
the appropriate weights for routing and event processing is
a complex task; routing calculations themselves can display
enormous variations in running time depending on source and
destination. Further total routing overhead itself can change
with the size of the graph. Because of the complexities
involved, we have not yet completely explored this scheme.

6) Scatter Partitioning: In contrast to the previous schemes,
this partitioning scheme assigns entities that lie close to each
other to different processors; that is, nearby entities are scat-
tered across the cluster. In the road network data, successive
nodes (intersections) are often numbered consecutively. If we
define an entity-to-processor assignment as P = m mod N
(P is the processor to which entity m is assigned and N
is the number of processors), then nearby entities will be
assigned to different processors. This scheme is motivated by
the spatial nature of load distribution in the network; entities
that lie close to each other have similar load characteristics
(Figures 10 and 11), and thus, by assigning nearby entities to
different processors, we spread the computational load across
the cluster. The obvious disadvantage to this scheme is the
significant number of interprocess messages; now, for every
node-hop that a vehicle makes, an interprocess message will be
generated. However, as we shall see in the following section,
this scheme performs surprisingly well.

V. EXPERIMENTAL RESULTS

We carried out our experiments on two high performance
clusters Coyote [1] and Lobo [2] available at the Los Alamos
National Laboratory. Coyote, running 64-bit Fedora Core 3,
has 1290 compute nodes, with each node consisting of two 64-
bit AMD Opteron 2.6 GHz processors and 8GB memory. Lobo

has a total of 272 compute nodes with each node containing
16 cores and 32 GB memory, for a total of 4352 cores.
Both these clusters use a Voltaire Infiniband high-speed inter-
connect, and the Panasas parallel file system which provides
a theoretical transfer rate of 20 GB/sec. For our scaling
studies, we ran our experiments starting from a minimum of
32 processors to a maximum of 1024 processors. Interprocess
communication was carried out using the OpenMPI message
passing interface [14].

A. Partitioning and Load Balancing

We first present experimental results for the various parti-
tioning schemes for FastTrans described in Section IV-B. The
partitioning schemes were tested on the road network in the
New York region, consisting of approximately half a million
intersections, 1.1 million road links, and over 25 million
vehicular trips. Together, these result in about four billion
simulation events. All partitioning experiments described in
this section were conducted on the Coyote cluster for different
processor configurations, ranging from 32 to 512 processors.

Figure 15 illustrates the basic performance of the various
partitioning schemes in terms of execution speed. Pure geo-
graphic partitioning performs the worst, while scatter parti-
tioning is the fastest, outperforming geographic partitioning
by about an order of magnitude. Interestingly, performance in
terms of message-passing overhead is almost the reverse of
execution time – the number of inter-process messages being
passed in scatter partitioning (highest overhead) is an order
of magnitude higher than geographic (lowest overhead). This
simply re-iterates what we observed during the code profiling
exercise (Figure 8), namely, that message-passing does not
take up a significant chunk of execution time.

Execution times for partitioning based on routing-load and
event-load are comparable to scatter, especially in the larger
processor configurations (256 and 512). At these sizes, the
geographical areas assigned to each grid cell become rapidly
smaller, resulting in a more balanced load. Ultimately, the
fairness of load distribution is the most important criterion for
performance, as is made amply clear in Figures 17 through 21.
These figures illustrate the computational load on each proces-
sor in the 256 processor set-up, with load being defined as a
weighted4 sum of event and routing load. Each bar represents
the load on one CPU over the entire simulation. The load
profile in the best-performing partitioning scheme (scatter) is
more or less flat, while that in the poorly performing schemes
are highly uneven. The Min/Max load ratio depicted in these
figures is a useful metric for fairness comparison, since the
speed of execution in a synchronized simulation is determined
by the slowest process; it follows that a low Min/Max ratio
will severely degrade performance, with ideal ratio being 1.
Figure 22 compares this ratio for the various partitioning
schemes; note how these correlate with speed of execution
(Figure 15).

4For a fixed network and simulation scenario, we can determine, through
profiling, the ratio of the relative cost of event processing to routing. The ratio
in this scenario is about 1 : 94.
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Fig. 15. Comparison of execution times of FastTrans (as a function
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Fig. 16. Comparison of the number of messages passed in FastTrans (as a
function of #CPUs) under different partitioning schemes.
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Fig. 17. Computational load distribution of FastTrans in a 256 CPU run
under scatter partitioning. Each bar represents the load on one CPU.
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Fig. 18. Computational load distribution in FastTrans in a 256 CPU run
under pure geographic partitioning.
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Fig. 19. Computational load distribution in FastTrans in a 256 CPU run
under geographic partitioning with balanced entities.
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Fig. 20. Computational load distribution in FastTrans in a 256 CPU run
under geographic partitioning with balanced event load (estimated).
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Fig. 21. Computational load distribution in FastTrans in a 256 CPU run
under geographic partitioning with balanced routing load. Fig. 22. Comparison of fairness of computation load in

FastTrans under different partitioning schemes.



To conclude this section, we note that the geographic parti-
tioning schemes based on routing-load and event-load perform
comparably to scatter in terms of execution time, and also have
very low messaging overheads. Thus, as noted earlier, for a
specific scenario it may be possible to tune these schemes
to outperform scatter partitioning. The tuning parameters,
however, would be highly dependent on the specific scenario
to be simulated; the event and routing load profile may differ
significantly in a simulation of a disaster scenario from the
simulation of a normal day. The load patterns would still
exhibit spatial clustering (e.g., there are usually only a few
main evacuation routes from a city) and scatter partitioning
would continue to achieve a balanced load profile. Generally,
for problem domains that exhibit spatial clustering of load,
scatter partitioning is a simple and highly effective approach.

B. Computational Scaling Results

In the experiments in this section, we test the scaling
performance of FastTrans, ActivitySim, and the integrated sim-
ulation on different processor configurations. For the FastTrans
experiments, in addition to the New York region, we also
simulated the smaller region of Twin Cities in Minnesota.
This allows us to observe the scaling behavior of FastTrans
as a function of the size of the road (routing) graph. The
Twin Cities road network consists of approximately 300, 000
road links and 150, 000 intersections; the New York graph
consists of half a million intersections and about 1.1 million
road links. All the experiments in this section use the scatter
partitioning scheme, and simulate an entire day’s worth of
vehicular trips – approximately six million for Twin Cities
and 25 million for New York. All experiments described in
this section were conducted on the Lobo cluster for different
processor configurations, ranging from 32 to 1024 processors.

Figure 23 shows the scaling performance in terms of execu-
tion time for FastTrans for the two scenarios. As expected, the
size of the New York road graph implies that routing calcula-
tions dominate the New York simulation and consequently,
execution time falls much more rapidly (as we add more
processors) for the New York scenario compared to the Twin
Cities scenario. The performance levels off at about 512 CPUs
for New York indicating that this may be close to the ideal
number of processors for a scenario of comparable size. We
expect further improvements with bigger cluster sizes (≥ 512)
for larger graphs.

Memory usage per processor, depicted in Figure 24 is fairly
constant for mid-size cluster runs (≤ 256), and increases for
larger cluster sizes, even though one would expect decreasing
memory burden per processor as more processors are used.
The reason for this behavior is that memory usage on a
compute node is dominated by the size of the routing data
structures. Since each processor keeps a copy of the routing
graph (as explained in Section IV-A), memory usage does
not decrease. At larger cluster sizes, the size of the inter-
process message buffers5 causes the memory usage per node

5Each process maintains 2N communication buffers, where N is the number
of processes in the simulation

to increase, though still very much within the memory capacity
of a compute node.

For both cities, the messaging overhead for FastTrans does
not vary with the number of simulation processes. This behav-
ior is entirely due to scatter partitioning (see also Figure 16);
since nearby entities are assigned to different processors, an
inter-process message is usually generated for each node (in-
tersection) that a vehicle traverses. Thus, the number of inter-
process messages in scatter partitioning essentially depends
only on the number of trips and the average path-length (node
traversals) – both of which depend only on the routing and
modeling aspects of the simulation. Consequently, messaging
overhead does not vary with cluster size.

Figures 26 through 28 show the scaling behavior perfor-
mance of the integrated simulation in the Twin Cities scenario,
compared to the performance of the modules when run sep-
arately. The performance of the integrated simulation follows
the performance of the dominant module; thus, the execution
time of the integrated simulation is similar to FastTrans, while
memory usage resembles that of ActivitySim. Once again, as a
result of scatter partitioning, messaging overhead is relatively
constant for all three simulators irrespective of the cluster size.
The absolute number of messages generated in the integrated
simulation is less than that of FastTrans, since the number
of vehicular trips that are created dynamically from within
ActivitySim is less than the stand-alone version of FastTrans.
All simulations for both cities run significantly faster than real-
time even on 32 processors. The high realtime speedups allow
us to simulate multiple scenarios and provide timely feedback
and analysis in real-world situations.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the use of large-scale,
parallel discrete-event simulation systems for realistic,
microsimulation-based modeling of large urban areas. These
included modules for realistic activity generation at the indi-
vidual level, and a discrete-event queue-based parallel trans-
portation simulator. The modular software architecture em-
ployed in building these systems allowed us to easily combine
the two modules into a high-fidelity, activity-driven simulation
of the road network.

Optimizations in the routing module through heuristics-
based routing allow us to perform simulations with significant
speed-ups over real time. Further, we discovered that the
optimal way to partition the computational workload in our
case was to exploit the spatial nature of the road network in
a counter-intuitive way – namely to scatter the entities, that
is, to explicitly assign nearby entities to different processors
in the cluster. A possible direction for further investigation
here is to observe if scatter partitioning or similar approaches
perform as effectively in other types of networks that exhibit
spatial clustering of load.

Experiments on HPC clusters illustrate the scalable nature of
the simulation paradigms and software engineering principles
employed in this paper. We are currently performing scaling
studies on even larger areas of the continental US. Further,
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Fig. 23. Execution time of FastTrans as a
function of #CPUs.
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Fig. 24. Memory usage per node in FastTrans
as a function of #CPUs.
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Fig. 25. Messages passed in FastTrans as a
function of #CPUs.
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Fig. 26. Comparison of execution times of
FastTrans, ActivitySim, and the integrated sim-
ulation as a function of #CPUs.
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Fig. 27. Comparison of the memory usage
per node in FastTrans, ActivitySim, and the
integrated simulation as a function of #CPUs.

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

10245122561286432

T
ot

al
 M

es
sa

ge
s 

P
as

se
d

Number of CPUs

FastTrans - Twin Cities
ActivitySim - Twin Cities

Integrated Simulation- Twin Cities

Fig. 28. Comparison of the number of mes-
sages passed in FastTrans, ActivitySim, and the
integrated simulation as a function of #CPUs.

we are also exploring the use of hybrid architectures –
computational platforms that use conventional and cell-based
processors – in the area of discrete-event microsimulations.
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